Document Type : Review

Authors

1 Department of Immunology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.

2 Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran.

3 Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah

4 Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran

10.32592/RR.2022.7.1.1

Abstract

Our understating of the mechanisms underlying the immunomodulatory properties of mesenchymal stem cells (MSCs) has greatly advanced during previous decades.Considering their unique regulatory effects, numerous applications have been establishedfor treating autoimmune diseases. However, cellular senescence and inefficient functions were found in MSCs isolated from autoimmune patients when they were particularly utilized in autologous settings. Several attempts have beenconducted to provide an in-depth understanding of mechanisms involved in MSC senescence andits negative impacts on autoimmune disease onset/ progression.Accordingly, indirect evidence of the role of immunosenescent MSCs hasbeen reported during the immunopathogenesis of systemic sclerosis, osteoarthritis, systemic lupus erythematosus, diabetes, psoriasis, and immune thrombocytopenia. This connection is mediated primarilythroughthe reduced self-renewability of MSCs and their abnormal immunoregulatory functions in the polarization of immune cells.Such knowledge is critical for developing therapeutic interventions to re-induce autoimmune patients' immune balance.To further explore the basic and clinical characteristics of MSC senescence in autoimmune disorders, this review comprehends the available information regarding molecular mechanisms and cellular interactions that finally perturb immuno-homeostasis of MSCs.

Keywords

Main Subjects

  1. Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM, Caplan AI. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med 2019; 4:22. doi: 10.1038/s41536-019- 0083-6.
  2. Caplan AI. Mesenchymal Stem Cells: Time to Change the Name! Stem Cells Transl Med2017; 6(6):1445-51. doi: 10.1002/sctm.17-0051.
  3. Li Z, Hu X, Zhong JF. Mesenchymal Stem Cells: Characteristics, Function, and Application. Stem Cells Int 2019; 2019:8106818. doi: 10.1155/2019/8106818.
  4. Yi T, Song SU. Immunomodulatory properties of mesenchymal stem cells and their therapeutic applications. Arch Pharm Res 2012; 35(2):213-21. doi: 10.1007/s12272-012-0202-z.
  5. Smith DA, Germolec DR. Introduction to immunology and autoimmunity. Environ Health Perspect 1999; 107 Suppl 5(Suppl 5):661-5. doi: 10. 1289/ehp.99107s5661.
  6. Rosenblum MD, Remedios KA, Abbas AK. Mechanisms of human autoimmunity. J Clin Invest 2015; 125(6):2228-33. doi: 10.1172/jci78088.
  7. Pullen LC. Immunoregulatory Cells: Can They Be Harnessed for Transplant? Am J Transplant 2019; 19(2):309-10. doi: 10.1111/ajt.15247.
  8. Shi Y, Wang Y, Li Q, Liu K, Hou J, Shao C. et al. Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Nat Rev Nephrol 2018; 14(8):493-507. doi: 10.1038/s41581- 018-0023-5.
  9. Delarosa O, Dalemans W, Lombardo E. Toll-like receptors as modulators of mesenchymal stem cells. Front Immunol 2012; 3:182. doi: 10.3389/fimmu. 2012.00182.
  10. Wu Y, Hoogduijn MJ, Baan CC, Korevaar SS, de Kuiper R, Yan L. et al. Adipose Tissue-Derived Mesenchymal Stem Cells Have a Heterogenic Cytokine Secretion Profile. Stem Cells Int2017; 2017:4960831. doi: 10.1155/2017/4960831.
  11. Li SN, Wu JF. TGF-β/SMAD signaling regulation of mesenchymal stem cells in adipocyte commitment. Stem Cell Res Ther 2020; 11(1):41. doi: 10.1186/ s13287-020-1552-y.
  12. Mounayar M, Kefaloyianni E, Smith B, Solhjou Z, Maarouf OH, Azzi J. et al. PI3kα and STAT1 Interplay Regulates Human Mesenchymal Stem Cell Immune Polarization. Stem Cells 2015; 33(6):1892- 901. doi: 10.1002/stem.1986.
  13. Liu S, Liu F, Zhou Y, Jin B, Sun Q, Guo S. Immunosuppressive Property of MSCs Mediated by Cell Surface Receptors. Front Immunol 2020; 11:1076. doi: 10.3389/fimmu.2020.01076.
  14. Waterman RS, Tomchuck SL, Henkle SL, Betancourt AM. A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an Immunosuppressive phenotype. plus One 2010; 5(4):e10088. doi: 10.1371/journal.pone. 0010088.
  15. Bernardo ME, Fibbe WE. Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell 2013; 13(4):392-402. doi: 10.1016/j.stem. 2013.09.006.
  16. Crisostomo PR, Wang Y, Markel TA, Wang M, Lahm T, Meldrum DR. Human mesenchymal stem cells stimulated by TNF-alpha, LPS, or hypoxia produce growth factors by an NF kappa B- but not JNK[1]dependent mechanism. Am J Physiol Cell Physiol 2008; 294(3):C675-82. doi: 10.1152/ajpcell. 00437. 2007.
  17. Yu KR, Espinoza DA, Wu C, Truitt L, Shin TH, Chen S. et al. The impact of aging on primate hematopoiesis as interrogated by clonal tracking. Blood 2018; 131(11):1195-205. doi: 10.1182/ blood-2017-0 802033. 8-
  18. Pang WW, Price EA, Sahoo D, Beerman I, Maloney WJ, Rossi DJ. et al. Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proc Natl Acad Sci U S A2011; 108(50):20012-7. doi: 10.1073/ pnas. 1116110108.
  19. Derhovanessian E, Maier AB, Beck R, Jahn G, Hähnel K, Slagboom PE. et al. Hallmark features of immunosenescence are absent in familial longevity. J Immunol 2010; 185(8):4618-24. doi: 10.4049/ jimmunol.1001629.
  20. Franceschi C, Garagnani P, Vitale G, Capri M, Salvioli S. Inflammaging and 'Garb-aging'. Trends Endocrinol Metab 2017; 28(3):199-212. doi: 10.1016/ j.tem.2016.09.005.
  21. Koetz K, Bryl E, Spickschen K, O'Fallon WM, Goronzy JJ, Weyand CM. T cell homeostasis in patients with rheumatoid arthritis. Proc Natl Acad Sci U S A2000; 97(16):9203-8. doi: 10.1073/ pnas. 97.16.9203.
  22. Schönland SO, Lopez C, Widmann T, Zimmer J, Bryl E, Goronzy JJ. et al. Premature telomeric loss in rheumatoid arthritis is genetically determined and involves both myeloid and lymphoid cell lineages. Proc Natl Acad Sci U S A2003; 100(23):13471-6. doi: 10.1073/pnas.2233561100.
  23. Panchal N, Booth C, Cannons JL, Schwartzberg PL. X-Linked Lymphoproliferative Disease Type 1: A Clinical and Molecular Perspective. Front Immunol2018; 9:666. doi: 10.3389/fimmu.2018.00666.
  24. American Journal of Clinical Hypnosis and Multiple Sclerosis : A Brief Case Report. 2011(March 2015). doi: 10.1080/00029157.1963.10402337.
  25. Iyer SS, He Q, Janczy JR, Elliott EI, Zhong Z, Olivier AK. et al. Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. Immunity 2013; 39(2):311-23. doi: 10.1016/j.immuni.2013.08.001.
  26. Gallenga CE, Parmeggiani F, Costagliola C, Sebastiani A, Gallenga PE. Inflammaging: should this term be suitable for age related macular degeneration too? Inflamm Res 2014; 63(2):105-7. doi: 10.1007/ s00011-013-0684-2.
  27. Libby P, Simon DI. Inflammation and thrombosis: the clot thickens. Circulation 2001; 103(13):1718-20. doi: 10.1161/01.cir.103.13.1718.
  28. Biagi E, Candela M, Franceschi C, Brigidi P. The aging gut microbiota: new perspectives. Ageing Res Rev 2011; 10(4):428-9. doi: 10.1016/ j.arr.2011.03.004.
  29. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ. et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 2003; 112(12):1821-30. doi: 10.1172/jci19451.
  30. Feuerer M, Herrero L, Cipolletta D, Naaz A, Wong J, Nayer A. et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med 2009; 15(8):930-9. doi: 10.1038/nm.2002.
  31. Tchkonia T, Morbeck DE, Von Zglinicki T, Van Deursen J, Lustgarten J, Scrable H. et al. Fat tissue, aging, and cellular senescence. Aging Cell 2010; 9(5):667-84. doi: 10.1111/j.1474-9726.2010.00608.x.
  32. Baharlooi H, Nouraei Z, Azimi M, Moghadasi AN, Tavassolifar MJ, Moradi B. et al. Umbilical cord mesenchymal stem cells as well as their released exosomes suppress proliferation of activated PBMCs in multiple sclerosis. Scand J Immunol 2020:e13013. doi: 10.1111/sji.13013. 33. Bonab MM, Alimoghaddam K, Talebian F, Ghaffari SH, Ghavamzadeh A, Nikbin B. Aging of mesenchymal stem cell in vitro. BMC Cell Biol 2006; 7:14. doi: 10.1186/1471-2121-7-14.
  33. Yu Y, Park YS, Kim HS, Kim HY, Jin YM, Jung SC. et al. Characterization of long-term in vitro culture[1]related alterations of human tonsil-derived mesenchymal stem cells: role for CCN1 in replicative senescence-associated increase in osteogenic differentiation. J Anat 2014; 225(5):510-8. doi: 10.1111/joa.12229.
  34. Tsai WB, Chung YM, Takahashi Y, Xu Z, Hu MC. Functional interaction between FOXO3a and ATM regulates DNA damage response. Nat Cell Biol 2008; 10(4):460-7. doi: 10.1038/ncb1709.
  35. Jeong SG, Cho GW. Endogenous ROS levels are increased in replicative senescence in human bone marrow mesenchymal stromal cells. Biochem Biophys Res Commun 2015; 460(4):971-6. doi: 10.1016/j.bbrc.2015.03.136.
  36. Stolzing A, Coleman N, Scutt A. Glucose-induced replicative senescence in mesenchymal stem cells. Rejuvenation Res 2006; 9(1):31-5. doi: 10.1089/ rej.2006.9.31.
  37. Sharma JN, Al-Omran A, Parvathy SS. Role of nitric oxide in inflammatory diseases. Inflammopharmacology 2007; 15(6):252-9. doi: 10.1007/s10787-007-0013-x.
  38. Serrano M, Hannon GJ, Beach D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 1993; 366(6456):704-7. doi: 10.1038/366704a0. 40. Shibata KR, Aoyama T, Shima Y, Fukiage K, Otsuka S, Furu M. et al. Expression of the p16INK4A gene is associated closely with senescence of human mesenchymal stem cells and is potentially silenced by DNA methylation during in vitro expansion. Stem Cells 2007; 25(9):2371-82. doi: 10.1634/ stemcells.2007-0225.
  39. Chikenji TS, Saito Y, Konari N, Nakano M, Mizue Y, Otani M. et al. p16(INK4A)-expressing mesenchymal stromal cells restore the senescence-clearance[1]regeneration sequence that is impaired in chronic muscle inflammation. EBioMedicine 2019; 44:86-97. doi: 10.1016/j.ebiom.2019.05.012.
  40. Zhou X, Hong Y, Zhang H, Li X. Mesenchymal Stem Cell Senescence and Rejuvenation: Current Status and Challenges. Front Cell Dev Biol2020; 8:364. doi: 10.3389/fcell.2020.00364. 43. Campisi J, d'Adda di Fagagna F. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol2007; 8(9):729-40. doi: 10.1038/nrm2233.
  41. Singh T, Newman AB. Inflammatory markers in population studies of aging. Ageing Res Rev 2011; 10(3):319-29. doi: 10.1016/j.arr.2010.11.002.
  42. Katsumoto TR, Whitfield ML, Connolly MK. The pathogenesis of systemic sclerosis. Annu Rev Pathol 2011; 6:509-37. doi: 10.1146/annurev-pathol[1]011110-130312.
  43. Cipriani P, Guiducci S, Miniati I, Cinelli M, Urbani S, Marrelli A. et al. Impairment of endothelial cell differentiation from bone marrow-derived mesenchymal stem cells: new insight into the pathogenesis of systemic sclerosis. Arthritis Rheum 2007; 56(6):1994-2004. doi: 10.1002/ art.22698.
  44. Larghero J, Farge D, Braccini A, Lecourt S, Scherberich A, Foïs E. et al. Phenotypical and functional characteristics of in vitro expanded bone marrow mesenchymal stem cells from patients with systemic sclerosis. Ann Rheum Dis 2008; 67(4):443-9. doi: 10.1136/ard.2007.071233.
  45. Fonteneau G, Bony C, Goulabchand R, Maria ATJ, Le Quellec A, Rivière S. et al. Serum-Mediated Oxidative Stress from Systemic Sclerosis Patients Affects Mesenchymal Stem Cell Function. Front Immunol 2017; 8:988. doi: 10.3389/ fimmu.2017.00988.
  46. Cipriani P, Di Benedetto P, Liakouli V, Del Papa B, Di Padova M, Di Ianni M. et al. Mesenchymal stem cells (MSCs) from scleroderma patients (SSc) preserve their immunomodulatory properties although senescent and normally induce T regulatory cells (Tregs) with a functional phenotype: implications for cellular-based therapy. Clin Exp Immunol2013; 173(2):195-206. doi: 10.1111/cei.12111.
  47. Haseeb A, Haqqi TM. Immunopathogenesis of osteoarthritis. Clin Immunol 2013; 146(3):185-96. doi: 10.1016/j.clim.2012.12.011.
  48. Gupta PK, Thej C. Mesenchymal stromal cells for the treatment of osteoarthritis of knee joint: context and perspective. Ann Transl Med 2019; 7(Suppl 6):S179. doi: 10.21037/atm.2019.07.54.
  49. Philipot D, Guérit D, Platano D, Chuchana P, Olivotto E, Espinoza F. et al. p16INK4a and its regulator miR[1]24 link senescence and chondrocyte terminal differentiation-associated matrix remodeling in osteoarthritis. Arthritis Res Ther 2014; 16(1):R58. doi: 10.1186/ar4494.
  50. Malaise O, Tachikart Y, Constantinides M, Mumme M, Ferreira-Lopez R, Noack S. et al. Mesenchymal stem cell senescence alleviates their intrinsic and seno-suppressive paracrine properties contributing to osteoarthritis development. Aging (Albany NY)2019; 11(20):9128-46. doi: 10.18632/aging.102379.
  51. Zhou T, Li HY, Liao C, Lin W, Lin S. Clinical Efficacy and Safety of Mesenchymal Stem Cells for Systemic Lupus Erythematosus. Stem Cells Int 2020; 2020:6518508. doi: 10.1155/2020/6518508.
  52. Sun LY, Zhang HY, Feng XB, Hou YY, Lu LW, Fan LM. Abnormality of bone marrow-derived mesenchymal stem cells in patients with systemic lupus erythematosus. Lupus 2007; 16(2):121-8. doi: 10.1177/0961203306075793.
  53. Gu Z, Cao X, Jiang J, Li L, Da Z, Liu H. et al. Upregulation of p16INK4A promotes cellular senescence of bone marrow-derived mesenchymal stem cells from systemic lupus erythematosus patients. Cell Signal 2012; 24(12):2307-14. doi: 10.1016/j.cellsig.2012.07.012. 57. Li X, Liu L, Meng D, Wang D, Zhang J, Shi D. et al. Enhanced apoptosis and senescence of bone-marrow[1]derived mesenchymal stem cells in patients with systemic lupus erythematosus. Stem Cells Dev 2012; 21(13):2387-94. doi: 10.1089/scd.2011.0447.
  54. Tang Y, Ma X, Zhang H, Gu Z, Hou Y, Gilkeson GS. et al. Gene expression profile reveals abnormalities of multiple signaling pathways in mesenchymal stem cell derived from patients with systemic lupus erythematosus. Clin Dev Immunol 2012; 2012:826182. doi: 10.1155/2012/826182.
  55. Lu L, Wang DD, Li X, Zeng XF, Sun LY. [Mechanism of umbilical cord mesenchymal stem cells in the up-regulation of regulatory T cells by transforming growth factor β1 in systemic lupus erythematosus]. Zhonghua Yi Xue Za Zhi 2013; 93(13):980-3. Journal Article.
  56. Che N, Li X, Zhang L, Liu R, Chen H, Gao X. et al. Impaired B cell inhibition by lupus bone marrow mesenchymal stem cells is caused by reduced CCL2 expression. J Immunol 2014; 193(10):5306-14. doi: 10.4049/jimmunol.1400036.
  57. Feng X, Che N, Liu Y, Chen H, Wang D, Li X. et al. Restored immunosuppressive effect of mesenchymal stem cells on B cells after olfactory 1/early B cell factor-associated zinc-finger protein down-regulation in patients with systemic lupus erythematosus. Arthritis Rheumatol 2014; 66(12):3413-23. doi: 10.1002/art.38879.
  58. Gu Z, Tan W, Ji J, Feng G, Meng Y, Da Z. et al. Rapamycin reverses the senescent phenotype and improves immunoregulation of mesenchymal stem cells from MRL/lpr mice and systemic lupus erythematosus patients through inhibition of the mTOR signaling pathway. Aging (Albany NY) 2016; 8(5):1102-14. doi: 10.18632/aging.100925.
  59. Chen H, Shi B, Feng X, Kong W, Chen W, Geng L. et al. Leptin and Neutrophil-Activating Peptide 2 Promote Mesenchymal Stem Cell Senescence Through Activation of the Phosphatidylinositol 3- Kinase/Akt Pathway in Patients With Systemic Lupus Erythematosus. Arthritis Rheumatol 2015; 67(9):2383-93. doi: 10.1002/art.39196.
  60. Hambright HG, Meng P, Kumar AP, Ghosh R. Inhibition of PI3K/AKT/mTOR axis disrupts oxidative stress-mediated survival of melanoma cells. Oncotarget 2015; 6(9):7195-208. doi: 10.18632/ oncotarget.3131. 65. Gao L, Bird AK, Meednu N, Dauenhauer K, Liesveld J, Anolik J. et al. Bone Marrow-Derived Mesenchymal Stem Cells From Patients With Systemic Lupus Erythematosus Have a Senescence[1]Associated Secretory Phenotype Mediated by a Mitochondrial Antiviral Signaling Protein-Interferon[1]β Feedback Loop. Arthritis Rheumatol 2017; 69(8):1623-35. doi: 10.1002/art.40142.
  61. Nie Y, Lau C, Lie A, Chan G, Mok M. Defective phenotype of mesenchymal stem cells in patients with systemic lupus erythematosus. Lupus2010; 19(7):850- 9. doi: 10.1177/0961203309361482.
  62. Gu Z, Jiang J, Tan W, Xia Y, Cao H, Meng Y. et al. p53/p21 Pathway involved in mediating cellular senescence of bone marrow-derived mesenchymal stem cells from systemic lupus erythematosus patients. Clin Dev Immunol 2013; 2013:134243. doi: 10.1155/2013/134243. 68. Zhou T, Hu Z, Yang S, Sun L, Yu Z, Wang G. Role of Adaptive and Innate Immunity in Type 2 Diabetes Mellitus. J Diabetes Res2018; 2018:7457269. doi: 10.1155/2018/7457269.
  63. Zhang D, Lu H, Chen Z, Wang Y, Lin J, Xu S. et al. High glucose induces the aging of mesenchymal stem cells via Akt/mTOR signaling. Mol Med Rep 2017; 16(2):1685-90. doi: 10.3892/mmr.2017.6832.
  64. Stolzing A, Sellers D, Llewelyn O, Scutt A. Diabetes induced changes in rat mesenchymal stem cells. Cells Tissues Organs 2010; 191(6):453-65. doi: 10.1159/000281826.
  65. Qi Y, Ma J, Li S, Liu W. Applicability of adipose[1]derived mesenchymal stem cells in treatment of patients with type 2 diabetes. Stem Cell Res Ther 2019; 10(1):274. doi: 10.1186/s13287-019- 1362- 2.
  66. Zhang D, Yan B, Yu S, Zhang C, Wang B, Wang Y. et al. Coenzyme Q10 inhibits the aging of mesenchymal stem cells induced by D-galactose through Akt/mTOR signaling. Oxid Med Cell Longev 2015; 2015:867293. doi: 10.1155/2015/ 867293.
  67. Serena C, Keiran N, Ceperuelo-Mallafre V, Ejarque M, Fradera R, Roche K. et al. Obesity and Type 2 Diabetes Alters the Immune Properties of Human Adipose Derived Stem Cells. Stem Cells 2016; 34(10):2559-73. doi: 10.1002/stem.2429.
  68. Liu MH, Li Y, Han L, Zhang YY, Wang D, Wang ZH. et al. Adipose-derived stem cells were impaired in restricting CD4(+)T cell proliferation and polarization in type 2 diabetic ApoE(-/-) mouse. Mol Immunol2017; 87:152-60. doi: 10.1016/j.molimm.2017.03.020.
  69. Rendon A, Schäkel K. Psoriasis Pathogenesis and Treatment. Int J Mol Sci 2019; 20(6). doi: 10.3390/ ijms20061475.
  70. Castro-Manrreza ME, Bonifaz L, Castro-Escamilla O, Monroy-García A, Cortés-Morales A, Hernández[1]Estévez E. et al. Mesenchymal Stromal Cells from the Epidermis and Dermis of Psoriasis Patients: Morphology, Immunophenotype, Differentiation Patterns, and Regulation of T Cell Proliferation. Stem Cells Int 2019; 2019:4541797. doi: 10.1155/ 2019/ 4541797.
  71. Orciani M, Campanati A, Salvolini E, Lucarini G, Di Benedetto G, Offidani A. et al. The mesenchymal stem cell profile in psoriasis. Br J Dermatol 2011; 165(3):585-92. doi: 10.1111/j.1365-2133.2011. 10438.x.
  72. Liu R, Wang Y, Zhao X, Yang Y, Zhang K. Lymphocyte inhibition is compromised in mesenchymal stem cells from psoriatic skin. Eur J Dermatol 2014; 24(5):560-7. doi: 10.1684/ejd. 2014.2394.
  73. Campanati A, Orciani M, Consales V, Lazzarini R, Ganzetti G, Di Benedetto G. et al. Characterization and profiling of immunomodulatory genes in resident mesenchymal stem cells reflect the Th1-Th17/Th2 imbalance of psoriasis. Arch Dermatol Res 2014; 306(10):915-20. doi: 10.1007/s00403-014-1493-3.
  74. Campanati A, Orciani M, Lazzarini R, Ganzetti G, Consales V, Sorgentoni G. et al. TNF-α inhibitors reduce the pathological Th(1) -Th(17) /Th(2) imbalance in cutaneous mesenchymal stem cells of psoriasis patients. Exp Dermatol2017; 26(4):319-24. doi: 10.1111/exd.13139.
  75. Hou R, Liu R, Niu X, Chang W, Yan X, Wang C. et al. Biological characteristics and gene expression pattern of bone marrow mesenchymal stem cells in patients with psoriasis. Exp Dermatol 2014; 23(7):521-3. doi: 10.1111/exd.12446.
  76. Hou R, Yan H, Niu X, Chang W, An P, Wang C. et al. Gene expression profile of dermal mesenchymal stem cells from patients with psoriasis. J Eur Acad Dermatol Venereol 2014; 28(12):1782-91. doi: 10.1111/jdv.12420.
  77. Hou R, Yin G, An P, Wang C, Liu R, Yang Y. et al. DNA methylation of dermal MSCs in psoriasis: identification of epigenetically dysregulated genes. J Dermatol Sci 2013; 72(2):103-9. doi: 10.1016/j. jdermsci.2013.07.002
  78. Zufferey A, Kapur R, Semple JW. Pathogenesis and Therapeutic Mechanisms in Immune Thrombocytopenia (ITP). J Clin Med 2017; 6(2). doi: 10.3390/jcm6020016.
  79. Zhang JM, Feng FE, Wang QM, Zhu XL, Fu HX, Xu LP. et al. Platelet-Derived Growth Factor-BB Protects Mesenchymal Stem Cells (MSCs) Derived From Immune Thrombocytopenia Patients Against Apoptosis and Senescence and Maintains MSC[1]Mediated Immunosuppression. Stem Cells Transl Med 2016; 5(12):1631-43. doi: 10.5966/sctm.2015- 0360.
  80. Xu LL, Fu HX, Zhang JM, Feng FE, Wang QM, Zhu XL. et al. Impaired Function of Bone Marrow Mesenchymal Stem Cells from Immune Thrombocytopenia Patients in Inducing Regulatory Dendritic Cell Differentiation Through the Notch- 1/ Jagged-1 Signaling Pathway. Stem Cells Dev 2017; 26(22):1648-61. doi: 10.1089/scd.2017.0078.
  81. He Y, Xu LL, Feng FE, Wang QM, Zhu XL, Wang CC. et al. Mesenchymal stem cell deficiency influences megakaryocytopoiesis through the TNFAIP3/NF-κB/SMAD pathway in patients with immune thrombocytopenia. Br J Haematol 2018; 180(3):395-411. doi: 10.1111/bjh.15034.
  82. Méndez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA. et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 2010; 466(7308):829-34. doi: 10.1038/ nature09262.
  83. Wang M, Feng R, Zhang JM, Xu LL, Feng FE, Wang CC. et al. Dysregulated megakaryocyte distribution associated with nestin (+) mesenchymal stem cells in immune thrombocytopenia. Blood Adv 2019; 3(9):1416-28. doi: 10.1182/bloodadvances. 201802 6690.
  84. Wang Y, Zhang J, Su Y, Wang C, Zhang G, Liu X. et al. miRNA-98-5p Targeting IGF2BP1 Induces Mesenchymal Stem Cell Apoptosis by Modulating PI3K/Akt and p53 in Immune Thrombocytopenia. Mol Ther Nucleic Acids 2020; 20:764-76. doi: 10.1016/j.omtn.2020.04.013.
  85. Zhang JM, Zhu XL, Xue J, Liu X, Long Zheng X, Chang YJ. et al. Integrated mRNA and miRNA profiling revealed deregulation of cellular stress response in bone marrow mesenchymal stem cells derived from patients with immune thrombocytopenia. Funct Integr Genomics 2018; 18(3):287-99. doi: 10.1007/s10142-018-0591-2
  86. Xu LL, Fu HX, Zhang JM, Feng FE, Wang QM, Zhu XL. et al. Impaired Function of Bone Marrow Mesenchymal Stem Cells from Immune Thrombocytopenia Patients in Inducing Regulatory Dendritic Cell Differentiation Through the Notch- 1/ Jagged-1 Signaling Pathway. Stem Cells Dev 2017; 26(22):1648-61. doi: 10.1089/scd.2017.0078.
  87. He Y, Xu LL, Feng FE, Wang QM, Zhu XL, Wang CC. et al. Mesenchymal stem cell deficiency influences megakaryocytopoiesis through the TNFAIP3/NF-κB/SMAD pathway in patients with immune thrombocytopenia. Br J Haematol 2018; 180(3):395-411. doi: 10.1111/bjh.15034.
  88. Méndez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA. et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 2010; 466(7308):829-34. doi: 10.1038/ nature09262.
  89. Wang M, Feng R, Zhang JM, Xu LL, Feng FE, Wang CC. et al. Dysregulated megakaryocyte distribution associated with nestin (+) mesenchymal stem cells in immune thrombocytopenia. Blood Adv 2019; 3(9):1416-28. doi: 10.1182/bloodadvances. 201802 6690.
  90. Wang Y, Zhang J, Su Y, Wang C, Zhang G, Liu X. et al. miRNA-98-5p Targeting IGF2BP1 Induces Mesenchymal Stem Cell Apoptosis by Modulating PI3K/Akt and p53 in Immune Thrombocytopenia. Mol Ther Nucleic Acids 2020; 20:764-76. doi: 10.1016/j.omtn.2020.04.013.
  91. Zhang JM, Zhu XL, Xue J, Liu X, Long Zheng X, Chang YJ. et al. Integrated mRNA and miRNA profiling revealed deregulation of cellular stress response in bone marrow mesenchymal stem cells derived from patients with immune thrombocytopenia. Funct Integr Genomics 2018; 18(3):287-99. doi: 10.1007/s10142-018-0591-2